

Mathematics: applications and interpretation HL formula booklet

For use during the course and in the examinations First examinations 2021

Version 1.0

HIGHER LEVEL

Contents

Topic 1: Number and algebra – HL	2
Topic 2: Functions – HL	3
Topic 3: Geometry and trigonometry – HL	4
Topic 4: Statistics and probability – HL	8
Tonic 5: Calculus – HI	10

Topic 1: Number and algebra – HL

1.2	The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
	The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d); S_n = \frac{n}{2} (u_1 + u_n)$
1.3	The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
	The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
1.11	The sum of an infinite geometric sequence	$S_{\infty} = \frac{u_1}{1-r}, \mid r \mid < 1$
1.4	Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}, \text{ where } FV \text{ is the future value,}$ $PV \text{ is the present value, } n \text{ is the number of years,}$ $k \text{ is the number of compounding periods per year,}$ $r\% \text{ is the nominal annual rate of interest}$
1.5	Exponents and logarithms	$a^x = b \iff x = \log_a b$, where $a > 0, b > 0, a \ne 1$
1.9	Laws of logarithms	$\log_a xy = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_a x^m = m \log_a x$ for $a, x, y > 0$
1.6	Percentage error	$\varepsilon = \left \frac{v_{\rm A} - v_{\rm E}}{v_{\rm E}} \right \times 100\% \text{ , where } v_{\rm E} \text{ is the exact value and } v_{\rm A} \text{ is}$ the approximate value of v
1.12	Complex numbers	z = a + bi
	Discriminant	$\Delta = b^2 - 4ac$
1.13	Modulus-argument (polar) and exponential (Euler) form	$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\operatorname{cis}\theta$
	and exponential (Euler)	$z = r(\cos\theta + 1\sin\theta) = re = r\cos\theta$

1.14	Determinant of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det A = A = ad - bc$
	Inverse of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, ad \neq bc$
1.15	Power formula for a matrix	$M^n = PD^nP^{-1}$, where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues

Topic 2: Functions – HL

Prior learning – HL	
Solutions of a quadratic equation	The solutions of $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, $a \ne 0$

2.1	Equations of a straight line	$y = mx + c$; $ax + by + d = 0$; $y - y_1 = m(x - x_1)$
	Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
2.5	Axis of symmetry of the graph of a quadratic function	$f(x) = ax^2 + bx + c \implies$ axis of symmetry is $x = -\frac{b}{2a}$
2.9	Logistic function	$f(x) = \frac{L}{1 + Ce^{-kx}}, L, k, C > 0$

Topic 3: Geometry and trigonometry - HL

Prior learning - HL

Area of a parallelogram

A = bh, where b is the base, h is the height

Area of a triangle

 $A = \frac{1}{2}(bh)$, where b is the base, h is the height

Area of a trapezoid

 $A = \frac{1}{2}(a+b)h$, where a and b are the parallel sides, h is the height

Area of a circle

 $A = \pi r^2$, where r is the radius

Circumference of a circle

 $C = 2\pi r$, where r is the radius

Volume of a cuboid

V = lwh, where l is the length, w is the width, h is the height

Volume of a cylinder

 $V = \pi r^2 h$, where r is the radius, h is the height

Volume of prism

V = Ah, where A is the area of cross-section, h is the height

Area of the curved surface of a cylinder

 $A = 2\pi rh$, where r is the radius, h is the height

Distance between two

points (x_1, y_1) and (x_2, y_2)

 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Coordinates of the midpoint of a line segment with endpoints

 (x_1, y_1) and (x_2, y_2)

 $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

3.1 Distance between two points (x_1, y_1, z_1) and

 (x_2, y_2, z_2)

 $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

Coordinates of the midpoint of a line segment with endpoints (x_1, y_1, z_1)

with endpoints (x_1, y_1, z_1) and (x_2, y_2, z_2) $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$

Volume of a right-pyramid

 $V = \frac{1}{3}Ah$, where A is the area of the base, h is the height

	Volume of a right cone	$V=rac{1}{3}\pi r^2 h$, where r is the radius, h is the height
	Area of the curved surface of a cone	$A=\pi r l$, where r is the radius, l is the slant height
	Volume of a sphere	$V = \frac{4}{3}\pi r^3$, where r is the radius
	Surface area of a sphere	$A=4\pi r^2$, where r is the radius
3.2	Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab\cos C; \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
	Area of a triangle	$A = \frac{1}{2}ab\sin C$
3.4	Length of an arc	$l=\frac{\theta}{360}\times 2\pi r$, where θ is the angle measured in degrees, r is the radius
	Area of a sector	$A = \frac{\theta}{360} \times \pi r^2$, where θ is the angle measured in degrees, r is the radius
3.7	Length of an arc	$l=r\theta$, where r is the radius, θ is the angle measured in radians
	Area of a sector	$A = \frac{1}{2} r^2 \theta$, where $ r $ is the radius, $ \theta $ is the angle measured in radians
3.8	Identities	$\cos^2\theta + \sin^2\theta = 1$
		$\tan \theta = \frac{\sin \theta}{\cos \theta}$

3.9	Transformation matrices	$\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}, \text{ reflection in the line } y = (\tan \theta)x$ $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}, \text{ horizontal stretch / stretch parallel to } x\text{-axis with a scale}$ factor of k $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}, \text{ vertical stretch / stretch parallel to } y\text{-axis with a scale}$
		factor of k $ \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}, \text{ enlargement, with a scale factor of } k, \text{ centre } (0,0) $
		$ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \text{ anticlockwise/counter-clockwise rotation of angle } \theta \text{ about the origin } (\theta > 0) $ $ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \text{ clockwise rotation of angle } \theta \text{ about the origin } $
3.10		$(\theta > 0)$
	Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$, where $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$
3.11	Vector equation of a line Parametric form of the equation of a line	$r = a + \lambda b$ $x = x_0 + \lambda l, \ y = y_0 + \lambda m, \ z = z_0 + \lambda n$

3.13	Scalar product	$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$, where $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ $\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \mathbf{w} \cos \theta$, where θ is the angle between \mathbf{v} and \mathbf{w}
	Angle between two vectors	$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ \mathbf{v} \mathbf{w} }$
	Vector product	$\mathbf{v} \times \mathbf{w} = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$
	Area of a parallelogram	$ v \times w = v w \sin \theta$, where θ is the angle between v and w $A = v \times w $ where v and w form two adjacent sides of a parallelogram

Topic 4: Statistics and probability — HL

4.2	Interquartile range	$IQR = Q_3 - Q_1$
4.3	Mean, \overline{x} , of a set of data	$\overline{x} = \frac{\displaystyle\sum_{i=1}^k f_i x_i}{n}$, where $n = \displaystyle\sum_{i=1}^k f_i$
4.5	Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$
	Complementary events	P(A) + P(A') = 1
4.6	Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
	Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
	Independent events	$P(A \cap B) = P(A) P(B)$
4.7	Expected value of a discrete random variable \boldsymbol{X}	$E(X) = \sum_{i=1}^{k} x_i P(X = x_i)$
4.8	Binomial distribution $X \sim \mathbf{B}(n, p)$	
	Mean	E(X) = np
	Variance	Var(X) = np(1-p)

4.14	Linear transformation of a single random variable	$E(aX + b) = aE(X) + b$ $Var(aX + b) = a^{2} Var(X)$
	Linear combinations of n independent random variables, $X_1, X_2,, X_n$	$E(a_{1}X_{1} \pm a_{2}X_{2} \pm \pm a_{n}X_{n}) = a_{1}E(X_{1}) \pm a_{2}E(X_{2}) \pm \pm a_{n}E(X_{n})$ $Var(a_{1}X_{1} \pm a_{2}X_{2} \pm \pm a_{n}X_{n})$ $= a_{1}^{2} Var(X_{1}) + a_{2}^{2} Var(X_{2}) + + a_{n}^{2} Var(X_{n})$
	Sample statistics Unbiased estimate of population variance s_{n-1}^2	$s_{n-1}^2 = \frac{n}{n-1} s_n^2$
4.17	Poisson distribution $X \sim \text{Po}(m)$	
	Mean	E(X) = m
	Variance	Var(X) = m
4.19	Transition matrices	$oldsymbol{T}^n oldsymbol{s}_0 = oldsymbol{s}_n$, where $oldsymbol{s}_0$ is the initial state

Topic 5: Calculus – HL

5.3	Derivative of x^n	$f(x) = x^n \implies f'(x) = nx^{n-1}$
5.9	Derivative of sin x	$f(x) = \sin x \implies f'(x) = \cos x$
	Derivative of $\cos x$	$f(x) = \cos x \implies f'(x) = -\sin x$
	Derivative of tan x	$f(x) = \tan x \implies f'(x) = \frac{1}{\cos^2 x}$
	Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
	Derivative of ln x	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u)$, where $u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	Product rule	$y = uv \implies \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
	Quotient rule	$y = \frac{u}{v} \implies \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
5.5	Integral of x^n	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
5.8	The trapezoidal rule	$\int_{a}^{b} y dx \approx \frac{1}{2} h \Big((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \Big),$ where $h = \frac{b - a}{n}$

5.11	Standard integrals	$\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$
5.12	Area of region enclosed by a curve and x or y -axes	$A = \int_{a}^{b} y dx \text{ or } A = \int_{a}^{b} x dy$
	Volume of revolution about <i>x</i> or <i>y</i> -axes	$V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$
5.13	Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = v \frac{\mathrm{d}v}{\mathrm{d}s}$
	Distance travelled from t_1 to t_2	distance = $\int_{t_1}^{t_2} v(t) dt$
	Displacement from t_1 to t_2	displacement = $\int_{t_1}^{t_2} v(t) dt$
5.16	Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n)$; $x_{n+1} = x_n + h$, where h is a constant (step length)
	Euler's method for coupled systems	$x_{n+1} = x_n + h \times f_1(x_n, y_n, t_n)$ $y_{n+1} = y_n + h \times f_2(x_n, y_n, t_n)$ $t_{n+1} = t_n + h$ where h is a constant (step length)
5.17	Exact solution for coupled linear differential equations	$x = Ae^{\lambda_1 t} p_1 + Be^{\lambda_2 t} p_2$